Monday, December 1, 2008

Info for Turbo (basic) - How a turbo system works



How A Turbo System Works? (Basic)

Engine power is proportional to the amount of air and fuel that can get into the cylinders. All things being equal, larger engines flow more air and as such will produce more power. If we want our small engine to perform like a big engine, or simply make our bigger engine produce more power, our ultimate objective is to draw more air into the cylinder. So how does a turbocharger get more air into the engine?



1 Compressor Inlet
2 Compressor Discharge
3 Charge air cooler (CAC)
4 Intake Valve
5 Exhaust Valve
6 Turbine Inlet
7 Turbine Discharge

The air filter through which ambient air passes before entering the compressor. The air is then compressed which raises the air’s density (mass / unit volume).Many turbocharged engines have a charge air cooler(aka intercooler) that cools the compressed air to further increase its density and to increase resistance to detonation.

After passing through the intake manifold, the air enters the engine’s cylinders, which contain a fixed volume. Since the air is at elevated density, each cylinder can draw in an increased mass flow rate of air. Higher air mass flow rate allows a higher fuel flow rate (with similar air/fuel ratio). Combusting more fuel results in more power being produced for a given size or displacement.

After the fuel is burned in the cylinder it is exhausted during the cylinder’s exhaust stroke in to the exhaust manifold.The high temperature gas then continues on to the turbine. The turbine creates backpressure on the engine which means engine exhaust pressure is higher than atmospheric pressure. A pressure and temperature drop occurs (expansion) across the turbine, which harnesses the exhaust gas’ energy to provide the power necessary to drive the compressor.

Components of Turbocharger




BOV
The Blow-Off valve (BOV) is a pressure relief device on the intake tract to prevent the turbo’s compressor from going into surge. When the throttle is closed rapidly, the airflow is quickly reduced, causing flow instability and pressure fluctuations. These rapidly cycling pressure fluctuations are the audible evidence of surge. Surge can eventually lead to thrust bearing failure due to the high loads associated with it. Blow-Off valves use a combination of manifold pressure signal and spring force to detect when the throttle is closed. When the throttle is closed rapidly, the BOV vents boost in the intake tract to atmosphere to relieve the pressure; helping to eliminate the phenomenon of surge.



WASTEGATE
On the exhaust side, a Wastegates provides us a means to control the boost pressure of the engine. There are two configurations of Wastegates, internal or external. Both internal and external Wastegates provide a means to bypass exhaust flow from the turbine wheel. Bypassing this energy (e.g. exhaust flow) reduces the power driving the turbine wheel to match the power required for a given boost level. Similar to the BOV, the Wastegates uses boost pressure and spring force to regulate the flow bypassing the turbine.

Internal Wastegates are built into the turbine housing and consist of a “flapper” valve, crank arm, rod end, and pneumatic actuator. It is important to connect this actuator only to boost pressure; i.e. it is not designed to handle vacuum and as such should not be referenced to an intake manifold.

External Wastegates are added to the exhaust plumbing on the exhaust manifold or header. The advantage of external Wastegates is that the bypassed flow can be reintroduced into the exhaust stream further downstream of the turbine. This tends to improve the turbine’s performance. On racing applications, this Wastegated exhaust flow can be vented directly to atmosphere.
Please note, although no boardcode and smiley buttons are shown, they are still useable

No comments: